

مؤتمر تحلية المياه في الدول العربية

12:01971

19-18 شعبان 1440 | 23-24 ابریل 2019

فندق انتركونتيننتال سيتي ستارز، القاهرة، جمهورية مصر العربية

CRITERIA ASSOCIATED WITH SUCCESSFUL DESALINATION PROJECTS

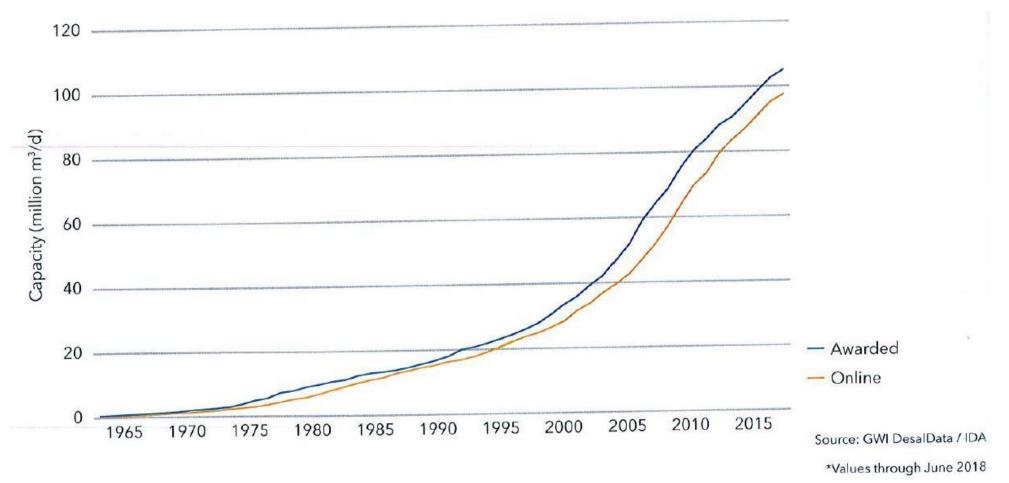
Presented by Dr YAHYA ELSAIE

Vice Chairman & Executive Board Member – Consulting Engineering Co – Egypt

APRIL 2019

FIRST DESALINATION PLANTS

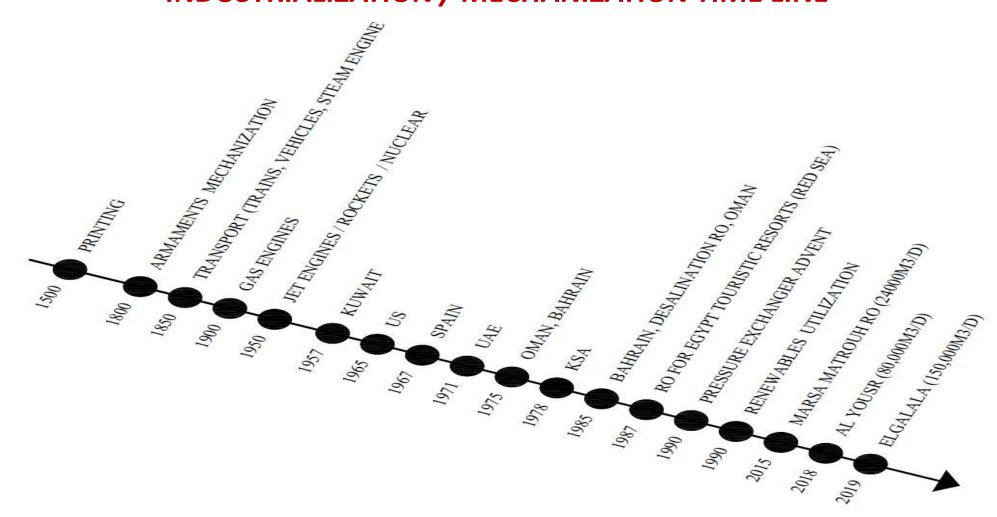
1955 250,000 IGD FIRST MSF LAND BASED PLANT, KUWAIT


1979 12 MIGD TVC PLANT IN SAADIYAT, UAE

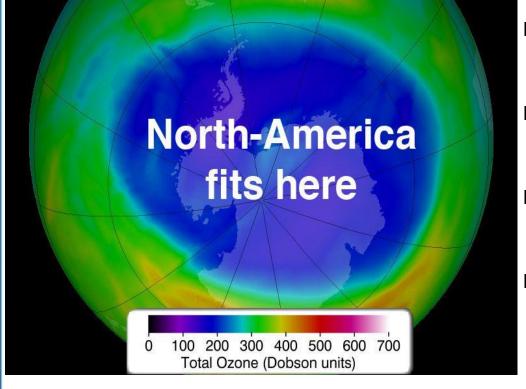
1987 1 MIGD RO PLANT IN SUR, OMAN

CONSULTING ENGINEERING CO.

CUMULATIVE CONTRACTED AND ONLINE CAPACITY 1965 - 2018


CRITERIA ASSOCIATED WITH SUCCESSFUL DESALINATION PROJECTS

- PLANNING & WATER SOURCES
- ENERGY AND DESALINATION CONFIGURATIONS
- ✤ FEASIBILITY STUDIES
- PRACTICAL SCHEDULE
- PERMIT FOR NATIONAL BOARD
- PLANNING & MONITORING
- ✤ COMPONENT MANUFACTURE LOCALLY



INTRODUCTION

INDUSTRIALIZATION / MECHANIZATION TIME LINE

TYPICAL OZONE DEPLETION IN STRATOSPHERE

INTRODUCTION

- CLEAN ENERGY ECONOMY
- DRIVING THE RESEARCH
- GLOBAL CONCERNS
- INTERNATIONAL/MULTILATERAL

ENVIRONMENTAL AGREEMENTS

✓ ELECTRICAL BASED (RO, ED).

✓ HEAT INTENSIVE (MAINLY MSF, TVC, MED) 3 GAS TURBINE 117 MW ISO RATING, **DESALINATION UNITS 3X6/7.2 MIGD** SEAWATER INTAKE & OUTFALL, UNIT 4 7.2/8 MIGD, 160 T/HR AUXILIARY BOILER, ABU DHABI

- **DESALINATION:**
- **WIND**
- ✓ CSP
- ✓ HYDRO

PV

CURRENT RENEWABLES:

INTRODUCTION

- DESALINATION COUNTERS DROUGHT
 E.G, KSA, KUWAIT, UAE, CAPE VERDE
 ISLAND, CANARY ISLAND, ETC
- WATER QUALITY FORECAST
- GEOGRAPHICAL LOCATION
- SOURCING STUDIES
- PERMITS

SUR POWER AND DESALINATION PLANT 4x35.4 MW ISO RATING GAS TURBINE AND 2 MIGPD DESALINATION PLANT INCLUDING SEA WATER INTAKE FACILITIES. 4 MG WATER STORAGE FACILITY

NG CO.

SOURCING THE RAW WATER (1)

- LABORATORY TESTING OF WATER SAMPLES:
 - ✓ TURBIDITY
 - ✓ CHEMISTRY
 - ✓ BACTERIOLOGY
 - ✓ TEMPERATURE
 - ✓ OIL AND CONTAMINANTS
 - ✓ MONITORING THE VALUES OVER TIME

PLANNING & WATER SOURCES

UMM AL NAR WEST POWER & DESALINATION PLANT (UNITS 1 TO 6)4x35.4 6x60 MW EXTRACTION CONDENSING TYPE TURBINES,
6X365 TONS/HR NATURAL GAS AND LIQUID FUEL FIRED BOILERS AT 60 BAR AND 480 C AND 6X4 MIGD DESALINATION PLANT

> <u>SOURCING THE RAW WATER (2)</u>

- PROTECTING ECOSYSTEM
- MARINE BIOLOGY
- <u>HYDRODYNAMICS</u>: ✓ CHARACTERISTICS OF THE SEA OVER A SUFFICIENT
 - ✓ MARINE BATHYMETRY
 PERIOD OF TIME
 - ✓ TIDES \checkmark NEAR SHORE
 - \checkmark WAVES \checkmark FAR SHORE

TURBIDITY IN SOURCE WATER

OILY WATER

SEA INTAKE STUDIES MISSING OR INSUFFICIENT

> REMOTE OR LONG DISTANCE LOCATION

> **FLOOD PROTECTION**

SEASONAL WATER QUALITY CHANGES

LACK OF BASIC KNOWLEDGE

CASE OF CAPE VERDE

MAL OPERATION SHORT MEMBRANE LIFE

STOPPAGES. DAMAGE TO MEMBRANES. PLANT ECONOMICS FAILURE.

SALT RECIRCULATION TEMPERATURE BUILD UP (THERMAL). TURBIDITY & SAND TRAPPING EROSION & SEDIMENTATION.

HIGH COSTS

MAJOR RISK OF DAMAGE & STOPPAGES

JELLY FISH

NORTH COAST, EGYPT VOLATILE LOAD FACTOR

MOST UNITS OUT OF SERVICE STANDBY POWER UNAVAILABLE

SELECTION OF MATERIALS

CORROSIVE NATURE OF COASTAL REGIONS

- CAPITAL COST WORRIES
- INTAKE AND DISCHARGE
- POWER SUPPLY ISSUE
- WATER DISTRIBUTION ISSUE
- ABILITY TO DEAL
- INSURANCES AND PREMIUMS

Al-Taweelah P&D 3000MW 300MIGD USE OF SEA WATER INTAKE TO CATER FOR MANY STAGES IN Intake 750,000 m3/HOUR Abu Dhabi, UAE

FUTURE (EAMPLES: AL TAWEELAH – MANY PHASES, INITIALLY

PLANNED SWI FOR 750,000 M3/HOUR, POWER 3000MW,

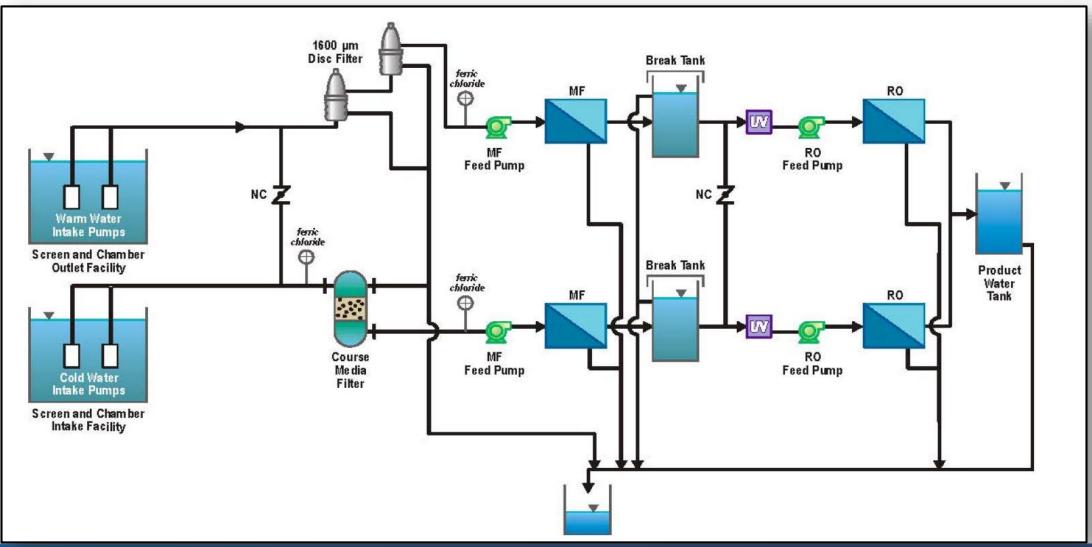
DESALINATION 300 MIGD - 1.4 MM3/DAY)

WATER SUSTAINABILITY

- CLOSE TO THE WATER HENCE COST MINIMAL
- QUALITY ACCEPTABLE
- DROUGHT CAN AFFECT SUCH COMMUNITIES

WITH DESALINATION, CONDITIONS ARE:

- ✓ AVAILABILITY OF SALINE WATER
- ✓ COASTAL AREAS
- ✓ SUITABLE AQUIFER
- ✓ IRRIGATION WASTEWATER
- ✓ AVAILABILITY OF ENERGY SOURCE
- ✓ CO-LOCATE DESALINATION WITH (PP, ST, GT, HRSG, CC)
- ✓ CO-LOCATION COOLING WATER TO DILUTE BRINE (USE OF COMMON INTAKE SOURCE)
- ✓ FUNDING
- ✓ PROPER DESIGN, CONSTRUCTION, TESTING , O&M



- THE ENERGY COSTS ARE A MAJOR EXPENSE
- THERMAL DESALINATION TECHNOLOGIES COUPLED WITH WASTE HEAT OR THERMAL RENEWABLES
 OFFER HIGH RELIABILITY
- **RO TECHNOLOGY IS PROVEN AND REQUIRES GREAT CARE FOR SUSTAINABILITY**
- SAFETY FACTORS REGARDING SOURCE WATER, SPARES, PRESERVATION OF SPARES (EG MEMBRANES)
 - AND EQUIPMENT IS OF PARAMOUNT IMPORTANCE
- RESPONSIBILITY FOR ELECTRICAL CONSUMPTION, MEMBRANE EXCHANGE, PRODUCTIVITY, QUALITY OF PRODUCT WATER, CHEMICALS CONSUMPTION SHALL BE MONITORED BY OPERATOR & MONITORING DATA PRESENTED AT REGULAR INTERVALS FOR AVAILABILITY, CAPACITY AND QUANTITY
- RO PLANTS PERMITS INCLUDE SAFEGUARD FOR SUSTAINABILITY

RO PILOT PLANT

CONSULTING ENGINEERING CO.

DESALINATION SOURCES & PRODUCTS

SOURCE WATER FOR DESALINATION PLANTS :

- COASTAL SEA WATER OPEN INTAKE
- COASTAL SHORE WELLS
- INLAND BRACKISH WELL WATER
- INLAND HIGH SALINITY WELLS
- SALINE INDUSTRIAL WATER

DESALINAION SOURCES & PRODUCTS

DESALINATED PRODUCT CAN BE:

- POTABLE WATER.
- DEMINERALIZED WATER.
- IRRIGATION WATER.

WATER REQUIRED FOR CONCRETE AND SERVICE WATER

ENERGY SOURCES AVAILABLE:

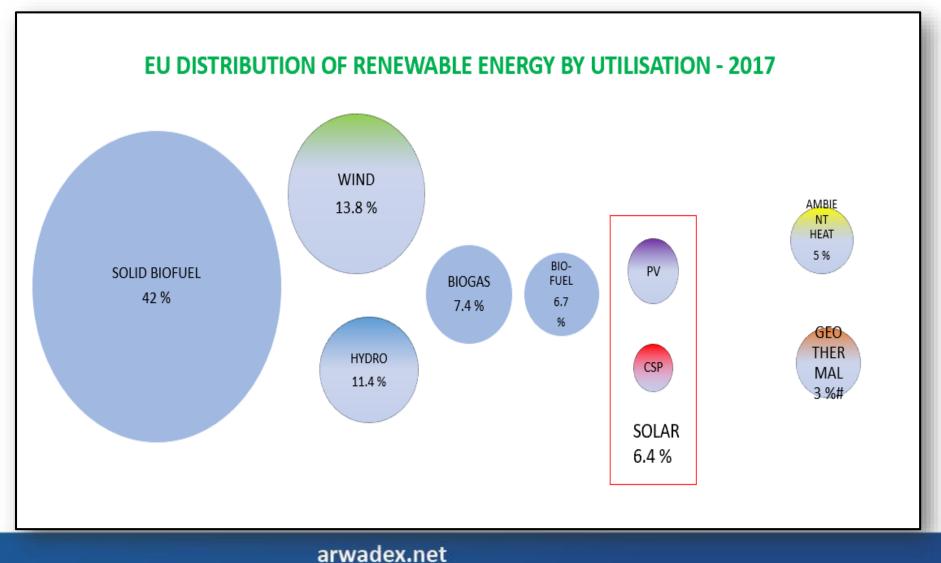
RENEWABLE – CSP

NUCLEAR

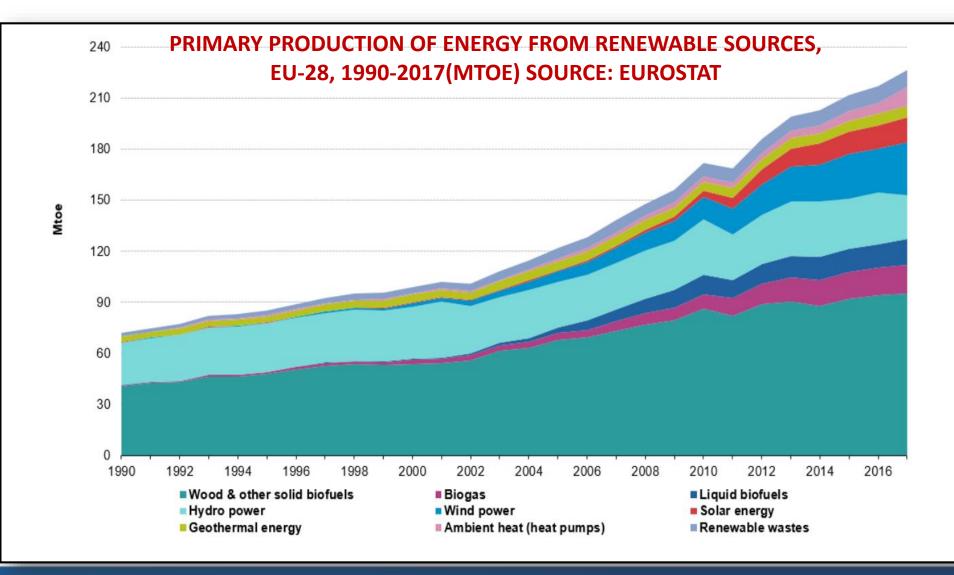
BIOGAS

SOLID BIO FUELS

- RENEWABLE PV
- WIND OFFSHORE
- WIND ONSHORE
- HYDRO


- OTHER FOSSIL FUELS (NATURAL
 - GAS, LPG, LNG, HFO, LFO)

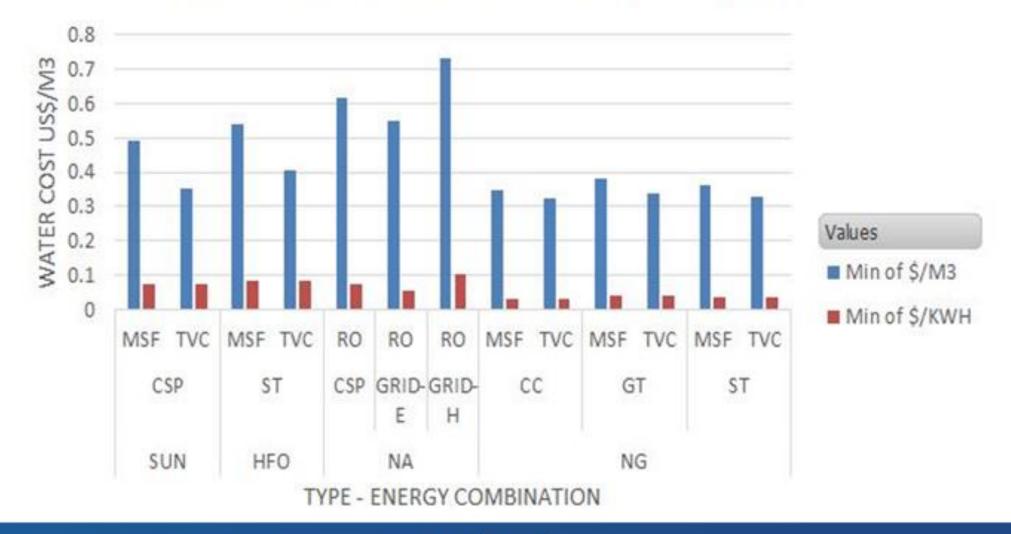
DEEP EARTH THERMAL



CONSULTING ENGINEERING CO.

RENEWABLES – DISTRIBUTION OF DIFFERENT TYPES (SOURCE EU STATISTICS 2018)

CONSULTING ENGINEERING CO.


MATRIX OF COMBINATIONS TYPES

Desalination Raw Water Sources & Products L (LARGE) M (MEI	UM)-L S (SMALL)-M-L
Source for desalination plants can be :	
Coastal – sea water open intake / Pipe Trestle / Sea Pipe x	x
Coastal – shore wells	X
Inland – brackish well water	X
Inland – high salinity wells	
Saline industrial water x	x
Desalinated product can be :	
Potable water x	x
Demineralised water for boilers or industrial use x	
Irrigation water (to augment reused water) X	x
Water rquired for concrete and service water X	x
Energy Sources	
Renewable – CSP X	X
Renewable – PV	
Wind – Offshore	
Wind – Onshore	
· Hydro X 2	X
Deep earth thermal X	
• Nuclear X 2	
Solid Bio Fuels X	
· Biogas X 2	
Other fossil fuels (natural gas, LPG, LNG, HFO, LFO) X	
· Electricity X 2	X
Thermal Energy X 2	
Reliability H M	v

ENERGY AND DESALINATION CONFIGURATIONS TYPICAL COMPARISON OF CSP / FOSSIL FUEL POWER PLANTS COMBINATIONS

WATER UNIT COSTS FOR DIFFERENT SCENARIOS

ENERGY REQUIREMENTS

CONSULTING ENGINEERING CO.

	MSF	MED	SWRO ¹	ED
Operation temp., °C	90-110	70	Ambient	Ambient
Electricity demand, kWh/m ³	2.5 -3.5	<mark>1.5–2.5</mark>	3.5– <mark>5</mark> .0	1.5-4.0 feed water with 1500-3500 ppm solids
Thermal energy demand, kWh/m ³	80.6 (290 kJ/kg)	80.6 (290 kJ/kg)	0	0

FOR A SUCCESSFUL PLANT :

- A FEASIBILITY IS NECESSARY FOR EACH PLANT
- LONG TERM VIEW
- INTAKES AND OUTFALLS
- ENVIRONMENTAL IMPACT.
- HYDROGEOLOGY (GW)
- GEOPHYSICAL EXAMINATION (GW)

arwadex.net

FEASIBILITY STUDIES

TIMELINE FOR A TYPICAL SUCCESSFUL PROJECT CONSULTING ENGINEERING CO. YES NO SINGLE INTAKE **SUITABLY** & OUTFALL NATIONAL PLAN TRANSMISSION SAMPLING DETERMINE &DISTRIBUTION / **TESTING** FORECAST STORAGE SITE PLANT CONTRACTING LOCATION MATTERS SIZING PROXIMITY

TIMELINE FOR A TYPICAL SUCCESSFUL PROJECT

STAKEHOLDERS TO BE INVOLVED AND DISCUSS REQUIREMENTS WITH :

- FINANCIERS
- CONSTRUCTION CONTRACTOR
- MAIN EQUIPMENT SUPPLIERS
- O&M COMPANY.

- INSURANCE & LEGAL REQUIREMENTS
- GUARANTEES IN PLACE
- SPARES
- TIME FRAME TILL PRODUCTION
- STORAGE / TRANSMISSION AND DISTRIBUTION

- **BUDGET AND FUNDING.**
- > IMPLEMENTATION IN THIS CONTEXT WILL HIGHLY HAVE A BETTER CHANCE

OF SUCCESS

FORMATION OF A NATIONAL DESALINATION BOARD

CONSULTING ENGINEERING CO.

PERMIT CHECKLIST TO BE FILLED & APPROVED (BY BOARD):

- PLANT LOCATION AND AREA
- SOURCE WATER
- GEOLOGY

- TREATED POTABLE WATER
- BUSINESS MODEL
- STAFFING AND TRAINING FACILITY
- GEOPHYSICAL AND HYDROGEOLOGY MODELLING _ MON
- SEA WATER STUDIES FOR INTAKE / OUTFALL
- TOPOGRAPHY AND SOIL INVESTIGATION
- WATER SOURCE PROXIMITY
- DESALINATION PROCESS CALCULATIONS

- MONITORING FACILITY
 - ENERGY SOURCES AND TERMINAL
 POINTS
 - SUBSTATION / TL AVAILABILITY
 - SIMPLICITY OF OPERATION

CASE OF O&M FOLLOWING A DESIGN BUILD CONTRACT

TYPICAL REQUIREMENTS:

- SUFFICIENT PERIOD FOR THE CONTRACT
- CAPACITY CHARGE & PRODUCTION CHARGE
- PERFORMANCE TESTS

SUITABLE PERFORMANCE

SPARES TO HAVE

DURABILITY AND EFFICIENCY TERMS

MTBF SCHEDULE

CONCLUSIONS

✓ DESALINATION IS A DROUGHT PROOF SOLUTION

$\checkmark \quad$ **TO AVOID FAILURES:**

PROPER CHOICE OF TYPE, LOCATION, ENERGY, SOURCE RAW WATER

THANK YOU FOR YOUR ATTENDANCE

BEST WISHES FOR A BETTER FUTURE

CONSULTING ENGINEERING CO.